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Reaction-diffusion equations on a sphere: Meandering of spiral waves
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~Received 23 April 1997; revised manuscript received 16 June 1997!

Numerical integration of an excitable reaction-diffusion~RD! system on a sphere is presented. The evolution
of counterrotating double spiral waves on this manifold is studied and it is shown that tips of the spiral can
either perform a meandering motion or rigidly rotate around a fixed center, depending on the system control
parameter. This transition in dynamics is also illustrated by considering the phase plane of the solutions of the
RD system.@S1063-651X~97!03410-7#

PACS number~s!: 82.40.Ck, 03.40.Kf, 82.20.Mj, 82.20.Wt
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I. INTRODUCTION

Excitable biological and chemical media support a vari
of wave forms of esoteric shapes@1–3#, the dominant ones
being toroidal scroll waves in three dimensions@4# and spiral
or target wave forms on the plane@5#. Winfree @6# pointed
out that the spiral wave observed in two-dimensional ex
able media, such as the Belousov-Zhabotinsky~BZ! chemi-
cal reaction, may not rotate rigidly about a fixed center a
that the tip of the spiral wave can perform complex motio
Recently, Barkley, Kness, and Tuckerman@7# simulated a
reaction-diffusion~RD! system on the plane and have show
that, depending on the parameters of the system, the s
wave can execute either a simple~periodic! or compound
~quasiperiodic! rotation. They demonstrated that a supercr
cal Hopf bifurcation is responsible for this transition. In
subsequent paper Barkley@8# considered the RD equation
as a two-parameter bifurcation system and studied the in
action between imaginary eigenvalues arising from the s
metry of the plane with Hopf bifurcation eigenvalues;
showed that the point where these eigenvalues coalesc
the path of Hopf bifurcations is the point of emergence of
path of modulated traveling-wave solutions that separate
region of the two kinds of modulated rotating-wave so
tions. He obtained some comprehensive results for the
system on the plane.

Our interest is to consider spiral waves on nonplanar s
faces. The main motivation for studying this type of soluti
lies in its applicability to problems@1,2# in physiology, biol-
ogy, and chemistry. Maselko and Showalter@9# performed
experiments with the BZ chemical waves propagating on
surface of a sphere. They observed that a spiral wave w
outward from a meandering source at the north pole
undergoes self-annihilation as it winds into itself at the so
pole.

The eikonal approximation to the RD system was used
Grindrod and Gomatam@10# to obtain a symmetric counter
rotating double spiral wave on the sphere, while McQuill
and Gomatam@5# demonstrated the existence of a class
asymmetric solutions of similar type.

In this work we consider a reaction-diffusion system on
sphere and by numerical integration of the equations we
lustrate the formation of a counterrotating double sp
wave, where one of the spiral arms winds out towards
north pole and curls around the pole, while the other arm
561063-651X/97/56~4!/3913~7!/$10.00
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the spiral moves towards the south pole and curls back
wards the equator. Considering numerical solutions of
system, we demonstrate that, depending on one of the sy
parameters, the motion can consist of either meanderin
rigid rotation around a fixed center. An important feature
our methodology is the introduction of the pha
plane for the normsiui25*0

2puu(u,f)u2df and ivi2

5*0
2puv(u,f)u2df at u5p/4; variablesu andv are defined

in the next section. This approach obviates the need for
cise definition of the spiral tip in investigating the qualitit
tive changes in the dynamics of the RD system.

II. SETTING THE SYSTEM

Consider the reaction-diffusion system of the form

]u

]t
5D2u1 f ~u,v !,

]v
]t

5g~u,v !, ~1!

where u5u(u,f,t) and v5v(u,f,t) are defined on a
spherical domain with a fixed radiusr where 0<u<p, 0
<f<2p, and

D2u5
1

r 2sinu

]

]uS sinu
]u

]u D1
1

r 2sin2u

]2u

]f2 .

The periodicity conditions

u~u,0!5u~u,2p! ;t, v~u,0!5u~u,2p! ;t

are inherent in the problem; however, the condition onv is
not implemented in the numerical process. The local reac
kinetics are given by

f ~u,v !5
1

e
u~12u!~u2uth!, g~u,v !5u2v,

where uth5(v1b)/a and a, b, and e!1 are the system
parameters. This kinetics is used by Barkley, Kness,
Tuckerman@7# in the study of the periodic-quasiperiod
transition for the planar spiral waves. The variablesu andv
are known as the excitation and the recovery variables,
spectively.

The system is singular atu50 andp. This singularity can
be dealt with as follows.~i! Assume that, near the poles, th
variableu is symmetrical with respect to the poles; therefo
3913 © 1997 The American Physical Society
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3914 56JAGANNATHAN GOMATAM AND FARIDON AMDJADI
at these points, the term (1/tanu)(]u/]u) can be approximated
by ]2u/]u2. ~ii ! Since the point (0,f) for all 0<f<2p
defines the north pole, we require

u~0,f!5u~0,f1a! ;aPR;

otherwiseu5u(0,f) is not a single-valued function off.
This condition implies thatu5u(0,f) is a constant function
of f, i.e., uff50; this implies that the term (1
sin2u)(]2u/]f2) can be omitted at the north pole. A simila
argument applies foru5p. Thus atu50 andp, the system
takes the form

]u

]t
5

2

r 2

]2u

]u2 1 f ~u,v !,
]v
]t

5g~u,v !.

In the absence of the diffusion term, the system has a st
but excitable fixed point atu5v50 ~see Fig. 1!, which is
one of the solutions of the steady-state system defined b

f ~u,v !50, g~u,v !50. ~2!

Any numerical scheme for solving Eq.~1! must take advan-
tage of the two distinct dynamical statesu and v. To be
precise, consider a small boundary layerd near the left
branch ofu shown in Fig. 1. We call a given point in th
spatial domain excited if (u,v) lies outside the boundar
layer, i.e., ifu.d. A point in the spatial domain is recovere
if it is within the boundary layer.

III. NUMERICAL SIMULATION

At any instant of the time, almost all the spatial points a
within a small boundary layer~see Fig. 2!. This figure shows
that only at the excited part of the waveuÞ0; otherwiseu
50. Therefore, the reaction term can be time stepped
ciently with little effort. Thus we time step the kinetics b
means of the following algorithm@11#. If un,d, then

un1150, vn115~12Dt !vn;

FIG. 1. Local reaction kinetics. Steady states of the system
defined by Eq.~2!. An excitable fixed point is located at the origin
uth is the excitability threshold. Subthreshold perturbations~initial
excitations on the left-hand side of the threshold! result in a simple
return to the origin, while superthreshold perturbations~initial ex-
citations on the right-hand side of the threshold! result in trajecto-
ries that sweep the state towards some new~excited! regime, before
returning ~perhaps via a prolonged cycle of behavior! to the rest
point. d denotes a small boundary layer; the system spends mo
the time within this region.
le

e

fi-

otherwise

uth5
vn1b

a
,

vn115vn1Dt~un2vn!, ~3!

un115un1~Dt/e!un~12un!~un2v th!,

whereun andvn are the values of theu and thev variables
at thenth time step~at some point in the spatial domain!, Dt
is the time step, andd is the size of a small boundary laye
where the points on the left of this boundary directly tend
the origin. Using this algorithm implies that within th
boundary layer kinetic terms require only one condition
evaluation and one floating-point multiplication.

We simulate Eq.~1! as follows. The surface of the sphe
is discretized withNf5120 in thef direction andNu561 in
the u direction. We denoteu(u,f), at the grid point (i , j )
and thenth time step, asui j

n . Therefore, the second deriva
tive is approximated by the fourth-order finite-difference fo
mula @12#

S ]2u

]u2D
i , j

5
1

h2 ~du
2ui j

n 2 1
12du

4ui j
n !1O~h4!:5Fi , j1O~h4!,

S ]2u

]f2D
i , j

5
1

k2 ~df
2 ui j

n 2 1
12df

4 ui j
n !1O~k4!:5Ti , j1O~k4!,

where duui , j5ui 11/2,j
n 2ui 21/2,j

n , dfui , j5ui , j 11/2
n 2ui , j 21/2

n ,
andh andk are grid sizes in theu andf directions, respec-
tively. The first-order derivatives are evaluated by seco
order central finite differences and the reaction term ti
stepped by algorithm~3!. With these finite-difference formu
las the Laplacian takes the form

re

of

FIG. 2. Meandering of the spiral wave on the sphere. The
rameters areDt51.0/1500.0,t59.0, Nu561, Nf5120, r 516.0,
a50.35, andb50.0008.
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56 3915REACTION-DIFFUSION EQUATIONS ON A SPHERE: . . .
D2u5
1

r 2tanu i
~Duui , j1¹uui , j !1O~h2!1Fi , j1O~h4!

1
1

r 2sin2u i
Ti , j1O~k4!,

where u i5( i 21)h and i 52, . . . ,Nu21; j 51, . . . ,Nf .
Obviously, the truncation error for this approximation e
cluding the poles isO(k4)1O(h2). At the poles, say, the
north pole,

D2u5
2

r 2h2 @ 21
12 ~u3,11u21,1!1 4

3 ~u2,11u0,1!2 5
2 u1,1#

1O~h4!.

The truncation error at the poles isO(h4). Note that the
terms u0,1 and u21,1 are not in the range of discretization
The layout of grids near the poles, say, the north pole
shown in Fig. 3. Therefore, the use of central difference
proximation for]u/]u at this pole implies

S ]u

]u D
1,1

5
1

2h
~u2,12u2,~Nf/2!11!.

FIG. 4. Initial solution att50.

FIG. 3. Discretization around the north pole.
is
-

On the other hand, using the central difference approxim
tion formula with i 51 and j 51 implies

S ]u

]u D
1,1

5
1

2h
~u2,12u0,1!.

Thus u0,15u2,(Nf/2)11 . A similar argument impliesu21,1

5u3,(Nf/2)11 .

There are only three system parametersa, b, and e by
which the properties of the medium can be adjusted and
numerical parametersd, Dt, h, andk, where we chooseh
'k. The radius of the sphere whose surface is the domai
excitation is also important in our simulation. For a sm

FIG. 5. Formation of the spiral wave att51.

FIG. 6. Formation of the spiral wave att52.
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3916 56JAGANNATHAN GOMATAM AND FARIDON AMDJADI
radius the spiral wave may never be excited and for a la
radius the time step must be decreased significantly, whic
computationally expensive and may also cause numerica
stabilities. We considered that for this problemr P @11,16# is
the reasonable regime where the wave can be excited. H
ever, we chooser 516.0 in order to allow enough domain o
excitation for the spiral wave to perform a complete rotatio

Initially, it is natural to set both variablesu and v to
nonzero values at some points in the spatial domain. Thus
start our simulation with the excitation variableu50.9 closer
to the right branch of the steady stateu51.0 along a thin

FIG. 8. Meandering of the spiral wave on the sphere. The
rameters areDt51.0/1500.0,t510.0, Nu561, Nf5120, r 516.0,
a50.35, andb50.0008.

FIG. 7. Meandering of the spiral wave on the sphere. The
rameters areDt51.0/1500.0,t59.5, Nu561, Nf5120, r 516.0,
a50.35, andb50.0008.
e
is
n-

w-

.

e

strip from the north pole to the equator~see Fig. 4!. We set
v50.6 from the north pole to the equator on the immedi
left- ~or right-! hand side of theu excitation. Setting these
nonzero values for the recovery variablev on one side of the
u excitation has the following merits:~i! It prevents the
annihilation of the wave propagation, at the starting period
times, by requiring that this part of the sphere is in a rec
ery period and~ii ! it prevents the propagation towards th
west ~east!.

The initial excitations in the fast variableu and the slow

-

FIG. 9. Meandering of the spiral wave on the sphere. The
rameters areDt51.0/1500.0,t510.5, Nu561, Nf5120, r 516.0,
a50.35, andb50.0008.

-

FIG. 10. Meandering of the spiral wave on the sphere. T
parameters areDt51.0/1500.0, t512.0, Nu561, Nf5120, r
516.0,a50.35, andb50.0008.
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56 3917REACTION-DIFFUSION EQUATIONS ON A SPHERE: . . .
FIG. 11. Spiral tip path rotation. The spiral tip path is taken
five complete rotations;Nu5131, Nf5260, a50.35, and b
50.0008.

FIG. 12. Meandering of the spiral wave on the sphere. T
parameters areDt51.0/10 000.0,t510.0, Nu5131, Nf5260, r
529.0,a50.35, andb50.0008.

FIG. 13. Contour plot of the fast variableu. 0<u<p,
0<f<2p, Nu5131,Nf5260,u50.3, 0.4.
variablev are sufficient, via the diffusion in the excitatio
variableu, to instigate a propagating spiral wave. Therefo
with these initial values, the variableu dominates the behav
ior of the system and a spiral wave starts propagating. At
beginning of the evolution process~see Figs. 5 and 6!, the
spiral tip at the north pole rotates to the left and the wa
emerges at the front of the sphere, while the other end of
spiral moves towards the south pole and curls back towa
the equator; this gives rise to a counterrotating double sp
on the sphere. As time evolves, two different segments of
same wave front collide and the wave front splits into tw
parts ~see Figs. 8 and 9!: The large loop undergoes sel
annihilation near the south pole, while the short remain
part of the wave gives rise to a new generation of the sp
wave ~see Fig. 10!. This process of the spiral wave rotatio
continues on the sphere as time progresses. One com
rotation is given by Figs. 2 and 7–10; these graphs show
a spiral wave at, say,t59.0 returns to the same position aft
some period of time att512.0. Our numerical results are i
agreement with the experimentally obtained waves repo
by Maselko and Showalter@9#.

As the wave rotates on the sphere the shape of the s
changes near the tips of the spiral. Because our spatial

e

FIG. 14. Contour plot of the slow variablev. 0<u<p,
0<f<2p, Nu5131,Nf5260,v50.1, 0.2, 0.3, 0.4, 0.5.

FIG. 15. Rigid rotation of the spiral wave on the sphere. T
parameters areDt51.0/1500.0, t55.0, Nu561, Nf5120, r
516.0,a50.85, andb50.0008.
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3918 56JAGANNATHAN GOMATAM AND FARIDON AMDJADI
main is without boundaries, the wave has the freedom
propagate in two different directions with two tips. We ha
demonstrated that for some parameter values, the spiral
follow the meandering trajectories. Thus the spiral wave
tation for these parameters is the compound rotation. Fig
11 shows a path taken by one of the spiral tips~the tip at
southern hemisphere! during five complete rotations fo
some parameter values. The motion of the spiral tip is c
veniently studied by projecting the instantaneous state of
system onto thex-y plane. We take the spiral tip to be th
intersection of the two contoursu50.5 and f (0.5,v)50.
This definition @7# of the spiral tip enables us to find
among numerical solutions. However, identifying the spi
tip needs a fine discretization. The spiral tips in Figs. 2 a

FIG. 16. Transition from rigid rotation to meandering motio
The parametera50.4.

FIG. 17. Transition from rigid rotation to meandering motio
The parametera50.65.
to
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-
re
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7–10 exhibit complex motion, but with the discretization r
ported above, it is not possible to obtain quantitative res
on this motion. The spiral tip path shown in Fig. 11 is giv
with Nu5131 andNf5260. Figure 12 shows spiral wave
with these grids and a significantly smaller time step. Co
tour plots with this resolution for the excitation variableu
and the recovery variablev are given in Figs. 13 and 14.

The qualititative aspect of the dynamics depends on
control parametera. As this parameter varies between 0.
and 0.95 we observe that some transition occurs arouna
50.80. Fora50.85 the spiral wave, after a very short tim
interval, rotates rigidly around a fixed center and the t
spiral tips rotate accordingly; the tip at the southern he
sphere traces out a fixed point on thex-y plane and is nearly
stationary, while the tip at the northern hemisphere rota
around the axis of the sphere, i.e., a core around the n

FIG. 18. Transition from rigid rotation to meandering motio
The parametera50.75.

FIG. 19. Transition from rigid rotation to meandering motio
The parametera50.85.
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56 3919REACTION-DIFFUSION EQUATIONS ON A SPHERE: . . .
pole. Figure 15 shows a simple rotation of the spiral wave
which the circle on the north pole is the path taken by
spiral tip. Considering the full solution set (u,v) of the
coupled system, it is easier and computationally inexpen
to explore the qualitative changes of the dynamics. Figu
16–19 show a sequence of solution states obtained as a
tion of the parametera.

The time-dependent simulation of the RD system can e
cidate qualitative properties of the wave evolution as illu
trated in Figs. 16–19. A comprehensive understanding
theexcitable media on nonplanar surfaces, including the t
sition from a rigid rotation to meandering motion, is possib
only with a bifurcation analysis of the RD system; this pro
lem will be considered elsewhere.

IV. CONCLUSION

In the present work, by starting with random initial valu
for the excitation and the recovery variablesu andv, respec-
tively, and by adjusting some system parameter, we dem
strate the existence of a counterrotating double spiral w
with their tips propagating in two different directions as tim
n
e

e
s

nc-

-
-
f

n-

-

n-
ve

evolves. The spiral tips can trace out either meandering
tion or rotate around a fixed center as evident in the pro
tion of their motion on thex-y plane, depending on the sys
tem control parametera. We have also shown that th
transition from simple to complex rotation can be obtain
by considering the numerical solution of the coupled syst
and studying the phase plane ofiui andivi . The motion of
the spiral wave studied in this paper is in qualititative agr
ment with the experimental observation of Maselko a
Showalter@9#.

Finally, we observed that the rotation of the wave
spherical surface is similar to that obtained by Barkle
Kness, and Tuckerman@7# on the planar surface, except th
in the absence of the boundary on a spherical surface s
parts of the wave undergo self-annihilation in contrast to
spiral wave behavior on bounded planar surfaces.
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