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Reaction-diffusion equations on a sphere: Meandering of spiral waves
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Numerical integration of an excitable reaction-diffusi®D) system on a sphere is presented. The evolution
of counterrotating double spiral waves on this manifold is studied and it is shown that tips of the spiral can
either perform a meandering motion or rigidly rotate around a fixed center, depending on the system control
parameter. This transition in dynamics is also illustrated by considering the phase plane of the solutions of the
RD system[S1063-651X97)03410-7

PACS numbg(s): 82.40.Ck, 03.40.Kf, 82.20.Mj, 82.20.Wt

[. INTRODUCTION the spiral moves towards the south pole and curls back to-
wards the equator. Considering numerical solutions of the
Excitable biological and chemical media support a varietysystem, we demonstrate that, depending on one of the system
of wave forms of esoteric shapgs—3], the dominant ones parameters, the motion can consist of either meandering or
being toroidal scroll waves in three dimensigd$and spiral ~ rigid rotation around a fixed center. An_ important feature of
or target wave forms on the plafi]. Winfree [6] pointed ~ our methodology is the introduction of the phase
out that the spiral wave observed in two-dimensional excitPlane for the norms||ul?=[3"|u(6,¢)|?d¢ and [v]?
able media, such as the Belousov-Zhaboting¥) chemi- = /3"|v(6,$)|?d¢ at = w/4; variablesu andv are defined
cal reaction, may not rotate rigidly about a fixed center andn the next section. This approach obviates the need for pre-
that the tip of the spiral wave can perform complex motion.cise definition of the spiral tip in investigating the qualitita-
Recently, Barkley, Kness, and Tuckermpf] simulated a tive changes in the dynamics of the RD system.
reaction-diffusion(RD) system on the plane and have shown
that, depending on the parameters of the system, the spiral Il. SETTING THE SYSTEM
wave can execute either a simpjeeriodig or compound ) ) o
(quasiperiodig rotation. They demonstrated that a supercriti-  Consider the reaction-diffusion system of the form
cal Hopf bifurcation is responsible for this transition. In a P
. . u Jdv
subsequent paper Barkl¢g] considered the RD equations —=A%u+f(uv), —=g(u,v), (1)
as a two-parameter bifurcation system and studied the inter- at ot
action between imaginary e|genyalues arising from the ,Sym\7vhere u=u(8,6.t) and v=v(6,4.t) are defined on a
metry of the plane with Hopf bifurcation eigenvalues; he : O ' !
. . herical domain with a fixed radiuswhere O< <, 0
showed that the point where these eigenvalues coalesce oR

the path of Hopf bifurcations is the point of emergence of the~ <2m, and

path of modulated traveling-wave solutions that separate the 1 9 ou 1 U
region of the two kinds of modulated rotating-wave solu- A%u= 2——( sing —) t o .
tions. He obtained some comprehensive results for the RD r°sing 96 9]~ 1%sint0 o
system on the plane. The periodicity conditions

Our interest is to consider spiral waves on nonplanar sur-
faces. The main motivation for studying this type of solution u(6,00=u(6,2m) Vt, v(6,00=u(6,2m) Vit
lies in its applicability to problemgl,2] in physiology, biol-
ogy, and chemistry. Maselko and Showalfét performed are inherent in the problem; however, the conditionvois
experiments with the BZ chemical waves propagating on thaot implemented in the numerical process. The local reaction
surface of a sphere. They observed that a spiral wave winddnetics are given by
outward from a meandering source at the north pole and
undergoes self-annihilation as it winds into itself at the south
pole.

The eikonal approximation to the RD system was used by
Grindrod and Gomatarfil0] to obtain a symmetric counter- where uy,=(v+Db)/a and a, b, and e<1 are the system
rotating double spiral wave on the sphere, while McQuillanparameters. This kinetics is used by Barkley, Kness, and
and Gomatani5] demonstrated the existence of a class ofTuckerman([7] in the study of the periodic-quasiperiodic
asymmetric solutions of similar type. transition for the planar spiral waves. The variahlesndv

In this work we consider a reaction-diffusion system on aare known as the excitation and the recovery variables, re-
sphere and by numerical integration of the equations we ilspectively.
lustrate the formation of a counterrotating double spiral The system is singular #=0 and. This singularity can
wave, where one of the spiral arms winds out towards thdoe dealt with as follows(i) Assume that, near the poles, the
north pole and curls around the pole, while the other arm ofzariableu is symmetrical with respect to the poles; therefore,

1
f(u,v)= < u(l—u)(u—uy), g(uv)=u-—u,
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FIG. 1. Local reaction kinetics. Steady states of the system are
defined by Eq(2). An excitable fixed point is located at the origin;
Uy is the excitability threshold. Subthreshold perturbatiGngial
excitations on the left-hand side of the threshalesult in a simple
return to the origin, while superthreshold perturbatidingial ex-
citations on the right-hand side of the threshalesult in trajecto- " i
ries that sweep the state towards some fexeited regime, before
returning (perhaps via a prolonged cycle of behayitw the rest
point. § denotes a small boundary layer; the system spends most of
the time within this region.

SSY YT Y

FIG. 2. Meandering of the spiral wave on the sphere. The pa-
at these points, the term (1/®@u/d6) can be approximated rameters areAt=1.0/1500.0,t=9.0, N,=61, N,=120, r =16.0,
by d%u/96?. (i) Since the point (@) for all 0<¢<27  a=0.35, ando=0.0008.
defines the north pole, we require

otherwise
u(0,¢)=u(0,p+a) VaeR;
v"+b
otherwiseu=u(0,¢) is not a single-valued function ap. Uh="5">
This condition implies thati=u(0,¢) is a constant function
of ¢, ie., u,,=0; this implies that the term (1/ oM =N AL (U= "), 3)

sirfd)(uldg?) can be omitted at the north pole. A similar
argument applies fof= 7. Thus atf=0 and, the system

n+l_,n neq N n_
takes the form u"t=u"+ (At/e)u"(1-u")(U" - vy,

ou 2 Ju ov whereu" andv" are the values of tha and thev variables
=12 542 +f(u,v), o =g(u,v). at thenth time step(at some point in the spatial domajirt
is the time step, and is the size of a small boundary layer,
here the points on the left of this boundary directly tend to
e origin. Using this algorithm implies that within the
boundary layer kinetic terms require only one conditional
evaluation and one floating-point multiplication.
_ _ We simulate Eq(1) as follows. The surface of the sphere
f = =0. 2 o . . . S :
(Uv)=0, g(uw)=0 @ is discretized witiN ,= 120 in the¢ direction andN,=61 in
Any numerical scheme for solving E¢L) must take advan- the ¢ direction. We denoaej(a,qb), at the grid point {j)
tage of the two distinct dynamical statesandv. To be ~ and thenth time step, asi; . Therefore, the second deriva-
precise, consider a small boundary lay@mear the left tive is approximated by the fourth-order finite-difference for-
branch ofu shown in Fig. 1. We call a given point in the Mula[12]
spatial domain excited if (,v) lies outside the boundary 5
layer, i.e., ifu>é. A point in the spatial domain is recovered (’9 ”) :i (82U — L s4uM)+0(h%): =F, ;+0(h%
h2 ‘9 12 9gYjj : i )

at

In the absence of the diffusion term, the system has a stabt’t]\al1
but excitable fixed point ati=v =0 (see Fig. 1, which is
one of the solutions of the steady-state system defined by

if it is within the boundary layer. a6 i
. NUMERICAL SIMULATION du 1
aT)Z) =F(53,,ui”j—ﬁa;u{})+0(k4):=n,j+0(k4),
ij

At any instant of the time, almost all the spatial points are
within a small boundary laygsee Fig. 2 This figure shows
that only at the excited part of the wavet0; otherwiseu ~ Where S,U; ;=UP, 10— Ui 112, SpUi j=U 10~ U172,
=0. Therefore, the reaction term can be time stepped effiandh andk are grid sizes in th@ and ¢ directions, respec-
ciently with little effort. Thus we time step the kinetics by tively. The first-order derivatives are evaluated by second-
means of the following algorithriil1]. If u"< 4, then order central finite differences and the reaction term time

stepped by algorithn(B). With these finite-difference formu-
untl=0, " l=(1-At)o" las the Laplacian takes the form
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FIG. 3. Discretization around the north pole.
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where 6;=(i—1)h and i=2,... Ny—1; j=1,... N,.

Obviously, the truncation error for this approximation ex-
cluding the poles i©O(k* +0O(h?). At the poles, say, the

north pole, FIG. 5. Formation of the spiral wave &t 1.
5 On the other hand, using the central difference approxima-
A2u= 22 [ 2 (Ug 1+ U_1 )+ 4(Up 1t Ugy) — Uy 4] tion formula withi=1 andj=1 implies
au 1
+0(h%). (—) =5 (Uz1—Ug ).
a0/, 2h "% '

The truncation error at the poles @(h%). Note that the Thus _ A similar arqument imoliesu
termsug; andu_y ; are not in the range of discretization. US Uo.a=Uany2)+1- imi ou IMPIES—1,1

The layout of grids near the poles, say, the north pole, is=Ys,n,/2)+1-
shown in Fig. 3. Therefore, the use of central difference ap- There are only three system parametersh, and e by

proximation fordu/d@ at this pole implies which the properties of the medium can be adjusted and four
numerical parameters, At, h, andk, where we choosé
Jau 1 ~k. The radius of the sphere whose surface is the domain of
501 ~2n (u2,1_u2,(N¢/2)+1)- excitation is also important in our simulation. For a small
1,1
] 1
] 1 ] 11
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FIG. 4. Initial solution at=0. FIG. 6. Formation of the spiral wave &t 2.
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FIG. 7. Meandering of the spiral wave on the sphere. The pa-
rameters areAt=1.0/1500.0,t=9.5, N,=61, N4=120, r=16.0, FIG. 9. Meandering of the spiral wave on the sphere. The pa-
a=0.35, andb=0.0008. rameters are\t=1.0/1500.0¢t=10.5,N,=61, N,,=120,r=16.0,
a=0.35, andb=0.0008.
radius the spiral wave may never be excited and for a large
radius the time step must be decreased significantly, which istrip from the north pole to the equat(see Fig. 4 We set
computationally expensive and may also cause numerical in»=0.6 from the north pole to the equator on the immediate
stabilities. We considered that for this problem [11,16 is  left- (or right-) hand side of theu excitation. Setting these
the reasonable regime where the wave can be excited. Howonzero values for the recovery variabl®n one side of the
ever, we choose=16.0 in order to allow enough domain of u excitation has the following merits:(i) It prevents the
excitation for the spiral wave to perform a complete rotation.annihilation of the wave propagation, at the starting period of
Initially, it is natural to set both variables andv to  times, by requiring that this part of the sphere is in a recov-
nonzero values at some points in the spatial domain. Thus wery period and(ii) it prevents the propagation towards the
start our simulation with the excitation variahle=0.9 closer west(eas}.
to the right branch of the steady state=1.0 along a thin The initial excitations in the fast variable and the slow

Ll \

IV YTVt

FIG. 8. Meandering of the spiral wave on the sphere. The pa- FIG. 10. Meandering of the spiral wave on the sphere. The
rameters arédt=1.0/1500.0t=10.0,N,=61,N,=120,r=16.0, parameters areAt=1.0/1500.0,t=12.0, N,=61, N,=120, r
a=0.35, ando=0.0008. =16.0,a=0.35, andb=0.0008.
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y FIG. 14. Contour plot of the slow variable. 0<6<m,
Os¢=<2m, N,=131,N,=260,0=0.1, 0.2, 0.3, 0.4, 0.5.

variablev are sufficient, via the diffusion in the excitation
variableu, to instigate a propagating spiral wave. Therefore,
with these initial values, the variabledominates the behav-
ior of the system and a spiral wave starts propagating. At the
beginning of the evolution procegsee Figs. 5 and)6the
25 3 35 4 45 5 55 6 65 7 75 spiral tip at the north pole rotates to the left and the wave
emerges at the front of the sphere, while the other end of the

FIG. 11. Spiral tip path rotation. The spiral tip path is taken by spiral move.s tqwards th.e south pole and quls back towa.rds
five complete rotations:N,—131, N,=260, a—0.35, and b the equator; this gives rise to a counterrotating double spiral
—0.0008. on the sphere. As time evolves, two different segments of the
same wave front collide and the wave front splits into two
parts (see Figs. 8 and )9 The large loop undergoes self-
annihilation near the south pole, while the short remaining
part of the wave gives rise to a new generation of the spiral
wave (see Fig. 10 This process of the spiral wave rotation
continues on the sphere as time progresses. One complete
rotation is given by Figs. 2 and 7—10; these graphs show that
a spiral wave at, say= 9.0 returns to the same position after
some period of time at=12.0. Our numerical results are in
agreement with the experimentally obtained waves reported
by Maselko and Showaltgg].

As the wave rotates on the sphere the shape of the spiral
changes near the tips of the spiral. Because our spatial do-

FIG. 12. Meandering of the spiral wave on the sphere. The
parameters arét=1.0/10 000.0,t=10.0, N,=131, N,=260, r
=29.0,a=0.35, andb=0.0008.

1
NN\

FIG. 15. Rigid rotation of the spiral wave on the sphere. The
FIG. 13. Contour plot of the fast variable. 0<6<m, parameters areAt=1.0/1500.0,t=5.0, N,=61, N,=120, r
O0=¢=2m, N,=131,N,=260,u=0.3, 0.4. =16.0,a=0.85, ando=0.0008.
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FIG. 16. Transition from rigid rotation to meandering motion. ~ FIG. 18. Transition from rigid rotation to meandering motion.
The parametea=0.4. The parametea=0.75.

L . . 7—-10 exhibit complex motion, but with the discretization re-
main is without boundaries, the wave has the freedom tQ,teq above, it is not possible to obtain quantitative results

propagate in two different directions with two tips. We _havgon this motion. The spiral tip path shown in Fig. 11 is given
demonstrated that for some parameter values, the spiral tiRgith N,=131 andN,=260. Figure 12 shows spiral waves
follow the meandering trajectories. Thus the spiral wave roywith these grids and a Significant]y smaller time Step_ Con-
tation for these parameters is the compound rotation. Figurgyur plots with this resolution for the excitation variahle

11 shows a path taken by one of the spiral tifhee tip at  and the recovery variable are given in Figs. 13 and 14.
southern hemisphereduring five complete rotations for The qualititative aspect of the dynamics depends on the
some parameter values. The motion of the spiral tip is coneontrol parametea. As this parameter varies between 0.35
veniently studied by projecting the instantaneous state of thand 0.95 we observe that some transition occurs ar@aund
system onto thex-y plane. We take the spiral tip to be the =0.80. Fora=0.85 the spiral wave, after a very short time
intersection of the two contours=0.5 andf(0.5p)=0. interval, rotates rigidly around a fixed center and the two
This definition [7] of the spiral tip enables us to find it Spiral tips rotate accordingly; the tip at the southern hemi-
among numerical solutions. However, identifying the spiralSphere traces out a fixed point on the plane and is nearly

tip needs a fine discretization. The spiral tips in Figs. 2 andbtationary, while the tip at the northern hemisphere rotates
around the axis of the sphere, i.e., a core around the north
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FIG. 17. Transition from rigid rotation to meandering motion. FIG. 19. Transition from rigid rotation to meandering motion.
The parametea=0.65. The parametea=0.85.
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pole. Figure 15 shows a simple rotation of the spiral wave irevolves. The spiral tips can trace out either meandering mo-
which the circle on the north pole is the path taken by thetion or rotate around a fixed center as evident in the projec-
spiral tip. Considering the full solution seu,p) of the tion of their motion on the-y plane, depending on the sys-
coupled system, it is easier and computationally inexpensiveem control parametea. We have also shown that the
to explore the qualitative changes of the dynamics. Figuretransition from simple to complex rotation can be obtained
16—19 show a sequence of solution states obtained as a furlzy considering the numerical solution of the coupled system
tion of the parametea. and studying the phase plane|ef| and||v|. The motion of
The time-dependent simulation of the RD system can eluthe spiral wave studied in this paper is in qualititative agree-
cidate qualitative properties of the wave evolution as illus-ment with the experimental observation of Maselko and
trated in Figs. 16—19. A comprehensive understanding oShowalter9].
theexcitable media on nonplanar surfaces, including the tran- Finally, we observed that the rotation of the wave on
sition from a rigid rotation to meandering motion, is possiblespherical surface is similar to that obtained by Barkley,
only with a bifurcation analysis of the RD system; this prob-Kness, and TuckermdiT] on the planar surface, except that

lem will be considered elsewhere. in the absence of the boundary on a spherical surface some
parts of the wave undergo self-annihilation in contrast to the
IV. CONCLUSION spiral wave behavior on bounded planar surfaces.

In the present work, by starting with random initial values
f_or the eXC|tat|on_ano_I the recovery variableandv, respec- ACKNOWLEDGMENT
tively, and by adjusting some system parameter, we demon-
strate the existence of a counterrotating double spiral wave The authors wish to thank A.J. Mulholland for the useful

with their tips propagating in two different directions as time discussion and hints on surface waves.
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